Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT
نویسندگان
چکیده
We implemented fast Gaussian gridding (FGG)-based non-uniform fast Fourier transform (NUFFT) on the graphics processing unit (GPU) architecture for ultrahigh-speed, real-time Fourier-domain optical coherence tomography (FD-OCT). The Vandermonde matrix-based non-uniform discrete Fourier transform (NUDFT) as well as the linear/cubic interpolation with fast Fourier transform (InFFT) methods are also implemented on GPU to compare their performance in terms of image quality and processing speed. The GPU accelerated InFFT/NUDFT/NUFFT methods are applied to process both the standard half-range FD-OCT and complex full-range FD-OCT (C-FD-OCT). GPU-NUFFT provides an accurate approximation to GPU-NUDFT in terms of image quality, but offers >10 times higher processing speed. Compared with the GPU-InFFT methods, GPU-NUFFT has improved sensitivity roll-off, higher local signal-to-noise ratio and immunity to side-lobe artifacts caused by the interpolation error. Using a high speed CMOS line-scan camera, we demonstrated the real-time processing and display of GPU-NUFFT-based C-FD-OCT at a camera-limited rate of 122 k line/s (1024 pixel/A-scan).
منابع مشابه
Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system
We realized graphics processing unit (GPU) based real-time 4D (3D+time) signal processing and visualization on a regular Fourier-domain optical coherence tomography (FD-OCT) system with a nonlinear k-space spectrometer. An ultra-high speed linear spline interpolation (LSI) method for lambda-to-k spectral re-sampling is implemented in the GPU architecture, which gives average interpolation speed...
متن کاملReal-time display on Fourier domain optical coherence tomography system using a graphics processing unit.
Fourier domain optical coherence tomography (FD-OCT) requires resampling of spectrally resolved depth information from wavelength to wave number, and the subsequent application of the inverse Fourier transform. The display rates of OCT images are much slower than the image acquisition rates due to processing speed limitations on most computers. We demonstrate a real-time display of processed OC...
متن کاملReal-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance
Real-time 4D full-range complex-conjugate-free Fourier-domain optical coherence tomography (FD-OCT) is implemented using a dual graphics processing units (dual-GPUs) architecture. One GPU is dedicated to the FD-OCT data processing while the second one is used for the volume rendering and display. GPU accelerated non-uniform fast Fourier transform (NUFFT) is also implemented to suppress the side...
متن کاملGraphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering.
In this report, we describe how to highly optimize a computer unified device architecture based platform to perform real-time processing of optical coherence tomography interferometric data and three-dimensional (3-D) volumetric rendering using a commercially available, cost-effective, graphics processing unit (GPU). The maximum complete attainable axial scan processing rate, including memory t...
متن کاملDevelopment of Real-Time Dual-Display Handheld and Bench-Top Hybrid-Mode SD-OCTs
Development of a dual-display handheld optical coherence tomography (OCT) system for retina and optic-nerve-head diagnosis beyond the volunteer motion constraints is reported. The developed system is portable and easily movable, containing the compact portable OCT system that includes the handheld probe and computer. Eye posterior chambers were diagnosed using the handheld probe, and the probe ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2010